

EVA DB

Database system for building simpler and faster AI-powered applications.

[image: EVA Banner]
 [https://github.com/georgia-tech-db/eva]

 EVA AI-Relational Database System

EVA AI-Relational Database System

Over the last decade, deep learning models have radically changed the world of computer vision and natural language processing. They are accurate on a variety of tasks ranging from image classification to question answering. However, there are two challenges that prevent a lot of users from benefiting from these models.

Usability and Application Maintainability

To use a vision or language model, the user must do a lot of imperative programming across low-level libraries, like OpenCV, PyTorch, and Hugging Face. This is a tedious process that often leads to a complex program or Jupyter Notebook that glues together these libraries to accomplish the given task. This programming complexity prevents a lot of people who are experts in other domains from benefiting from these models.

Historically, database systems have been successful because the query language is simple enough in its basic structure that users without prior experience are able to learn a usable subset of the language on their first sitting. EVA supports a declarative SQL-like query language, called EVAQL, that is designed to make it easier for users to leverage these models. With this query language, the user may compose multiple models in a single query to accomplish complicated tasks with minimal programming.

Here is a illustrative query that examines the emotions of actors in a movie by leveraging multiple deep learning models that take care of detecting faces and analyzing the emotions of the detected bounding boxes:

SELECT id, bbox, EmotionDetector(Crop(data, bbox))
FROM Interstellar
 JOIN LATERAL UNNEST(FaceDetector(data)) AS Face(bbox, conf)
WHERE id < 15;

By using a declarative language, the complexity of the program or Jupyter Notebook is significantly reduced. This in turn leads to more maintainable code that allows users to build on top of each other’s queries.

GPU Cost and Human Time

From a cost standpoint, it is very expensive to run these deep learning models on large image or video datasets. For example, the state-of-the-art object detection model takes multiple GPU-decades to process just a year’s worth of videos from a single traffic monitoring camera. Besides the money spent on hardware, this also increases the time that the user spends waiting for the model inference process to finish.

EVA automatically optimizes the queries to reduce inference cost and query execution time using its Cascades-style query optimizer. EVA’s optimizer is tailored for video analytics. The Cascades-style extensible query optimization framework [https://www.cse.iitb.ac.in/infolab/Data/Courses/CS632/Papers/Cascades-graefe.pdf] has worked very well for several decades in SQL database systems. Query optimization is one of the signature components of database systems — the bridge that connects the declarative query language to efficient execution [http://www.redbook.io/pdf/redbook-5th-edition.pdf].

 Getting Started

Getting Started

Part 1: Install EVA

EVA supports Python (versions >= 3.7). To install EVA, we recommend using the pip package manager:

pip install evadb

Launch EVA server

EVA is based on a client-server architecture [https://www.postgresql.org/docs/15/tutorial-arch.html]. To launch the EVA server, run the following command on the terminal:

eva_server &

Part 2: Start a Jupyter Notebook Client

Here is an illustrative Jupyter notebook [https://evadb.readthedocs.io/en/stable/source/tutorials/01-mnist.html] focusing on MNIST image classification using EVA. The notebook works on Google Colab [https://colab.research.google.com/github/georgia-tech-db/eva/blob/master/tutorials/01-mnist.ipynb].

Connect to the EVA server

To connect to the EVA server in the notebook, use the following Python code:

allow nested asyncio calls for client to connect with server
import nest_asyncio
nest_asyncio.apply()
from eva.server.db_api import connect

hostname and port of the server where EVA is running
connection = connect(host = '0.0.0.0', port = 8803)

cursor allows the notebook client to send queries to the server
cursor = connection.cursor()

Load video for analysis

Download the MNIST video for analysis.

!wget -nc https://www.dropbox.com/s/yxljxz6zxoqu54v/mnist.mp4

Use the LOAD statement is used to load a video onto a table in EVA server.

cursor.execute('LOAD VIDEO "mnist.mp4" INTO MNISTVideoTable;')
response = cursor.fetch_all()
print(response)

Part 3: Register an user-defined function (UDF)

User-defined functions allow us to combine SQL with deep learning models. These functions wrap around deep learning models.

Download the user-defined function for classifying MNIST images.

!wget -nc https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/apps/mnist/eva_mnist_udf.py

cursor.execute("""CREATE UDF IF NOT EXISTS MnistCNN
 INPUT (data NDARRAY (3, 28, 28))
 OUTPUT (label TEXT(2))
 TYPE Classification
 IMPL 'eva_mnist_udf.py';
 """)
response = cursor.fetch_all()
print(response)

Run a query using the newly registered UDF!

cursor.execute("""SELECT data, MnistCNN(data).label
 FROM MNISTVideoTable
 WHERE id = 30;""")
response = cursor.fetch_all()

Visualize the output

The output of the query is visualized in the notebook [https://evadb.readthedocs.io/en/stable/source/tutorials/01-mnist.html#visualize-output-of-query-on-the-video].

Part 5: Start a Command Line Client

Besides the notebook interface, EVA also exports a command line interface for querying the server. This interface allows for quick querying from the terminal:

>>> eva_client
eva=# LOAD VIDEO "mnist.mp4" INTO MNISTVid;
@status: ResponseStatus.SUCCESS
@batch:

0 Video successfully added at location: mnist.p4
@query_time: 0.045

eva=# SELECT id, data FROM MNISTVid WHERE id < 1000;
@status: ResponseStatus.SUCCESS
@batch:
 mnistvid.id mnistvid.data
 0 0 [[[0 2 0]\n [0 0 0]\n...
 1 1 [[[2 2 0]\n [1 1 0]\n...
 2 2 [[[2 2 0]\n [1 2 2]\n...

 997 997 [[[0 2 0]\n [0 0 0]\n...
 998 998 [[[0 2 0]\n [0 0 0]\n...
 999 999 [[[2 2 0]\n [1 1 0]\n...

[1000 rows x 2 columns]
@query_time: 0.216

eva=# exit

 Start EVA Server

Start EVA Server

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Launch EVA server

We use this notebook for launching the EVA server.

Install EVA package if needed
%pip install "evadb" --quiet

import os
import time
from psutil import process_iter
from signal import SIGTERM
import re
import itertools

def shell(command):
 print(command)
 os.system(command)

def stop_eva_server():
 for proc in process_iter():
 if proc.name() == "eva_server":
 proc.send_signal(SIGTERM)

def is_eva_server_running():
 for proc in process_iter():
 if proc.name() == "eva_server":
 return True
 return False

def launch_eva_server():
 # Stop EVA server if it is running
 # stop_eva_server()

 os.environ['GPU_DEVICES'] = '0'

 # Start EVA server
 shell("nohup eva_server > eva.log 2>&1 &")

 last_few_lines_count = 3
 try:
 with open('eva.log', 'r') as f:
 for lines in itertools.zip_longest(*[f]*last_few_lines_count):
 print(lines)
 except FileNotFoundError:
 pass

 # Wait for server to start
 time.sleep(10)

def connect_to_server():
 from eva.server.db_api import connect
 import nest_asyncio
 nest_asyncio.apply()

 status = is_eva_server_running()
 if status == False:
 launch_eva_server()

 # Connect client with server
 connection = connect(host = '127.0.0.1', port = 8803)
 cursor = connection.cursor()

 return cursor

Launch server
launch_eva_server()

Note: you may need to restart the kernel to use updated packages.
nohup eva_server --port 8803 > eva.log 2>&1 &

 MNIST TUTORIAL

MNIST TUTORIAL

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Start EVA server

We are reusing the start server notebook for launching the EVA server.

!wget -nc "https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/00-start-eva-server.ipynb"
%run 00-start-eva-server.ipynb
cursor = connect_to_server()

File ‘00-start-eva-server.ipynb’ already there; not retrieving.

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

nohup eva_server > eva.log 2>&1 &

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

Downloading the videos

Getting MNIST as a video
!wget -nc https://www.dropbox.com/s/yxljxz6zxoqu54v/mnist.mp4
Getting a udf
!wget -nc https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/apps/mnist/eva_mnist_udf.py

File ‘mnist.mp4’ already there; not retrieving.

File ‘eva_mnist_udf.py’ already there; not retrieving.

Upload the video for analysis

cursor.execute('DROP TABLE IF EXISTS MNISTVid')
response = cursor.fetch_all()
response.as_df()
cursor.execute("LOAD VIDEO 'mnist.mp4' INTO MNISTVid")
response = cursor.fetch_all()
response.as_df()

 Object Detection Tutorial

Object Detection Tutorial

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Start EVA server

We are reusing the start server notebook for launching the EVA server.

!wget -nc "https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/00-start-eva-server.ipynb"
%run 00-start-eva-server.ipynb
cursor = connect_to_server()

File ‘00-start-eva-server.ipynb’ already there; not retrieving.

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

nohup eva_server > eva.log 2>&1 &

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

Download the Videos

Getting the video files
!wget -nc "https://www.dropbox.com/s/k00wge9exwkfxz6/ua_detrac.mp4?raw=1" -O ua_detrac.mp4

File ‘ua_detrac.mp4’ already there; not retrieving.

Load the surveillance videos for analysis

We use regular expression to load all the videos into the table

cursor.execute('DROP TABLE IF EXISTS ObjectDetectionVideos')
response = cursor.fetch_all()
response.as_df()

cursor.execute('LOAD VIDEO "ua_detrac.mp4" INTO ObjectDetectionVideos;')
response = cursor.fetch_all()
response.as_df()

 EMOTION ANALYSIS

EMOTION ANALYSIS

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Start EVA Server

We are reusing the start server notebook for launching the EVA server

!wget -nc "https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/00-start-eva-server.ipynb"
%run 00-start-eva-server.ipynb
cursor = connect_to_server()

File ‘00-start-eva-server.ipynb’ already there; not retrieving.

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

nohup eva_server > eva.log 2>&1 &

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

Video Files

getting some video files to test

A video of a happy person
!wget -nc "https://www.dropbox.com/s/gzfhwmib7u804zy/defhappy.mp4?raw=1" -O defhappy.mp4

Adding Emotion detection
!wget -nc https://raw.githubusercontent.com/georgia-tech-db/eva/master/eva/udfs/emotion_detector.py

Adding Face Detector
!wget -nc https://raw.githubusercontent.com/georgia-tech-db/eva/master/eva/udfs/face_detector.py

File ‘defhappy.mp4’ already there; not retrieving.

File ‘emotion_detector.py’ already there; not retrieving.

File ‘face_detector.py’ already there; not retrieving.

Adding the video file to EVADB for analysis

cursor.execute('DROP TABLE IF EXISTS HAPPY')
response = cursor.fetch_all()
response.as_df()
cursor.execute('LOAD VIDEO "defhappy.mp4" INTO HAPPY')
response = cursor.fetch_all()
response.as_df()

 Image Segmentation Tutorial

Image Segmentation Tutorial

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Start EVA server

We are reusing the start server notebook for launching the EVA server.

!wget -nc "https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/00-start-eva-server.ipynb"
%run 00-start-eva-server.ipynb
cursor = connect_to_server()

File '00-start-eva-server.ipynb' already there; not retrieving.

Note: you may need to restart the kernel to use updated packages.
nohup eva_server --port 8803 > eva.log 2>&1 &

Download the Videos

Getting the video files
!wget -nc "https://www.dropbox.com/s/k00wge9exwkfxz6/ua_detrac.mp4?raw=1" -O ua_detrac.mp4

File 'ua_detrac.mp4' already there; not retrieving.

Load sample video from DAVIS dataset for analysis

cursor.execute('DROP TABLE IF EXISTS VideoForSegmentation;')
response = cursor.fetch_all()
response.as_df()
cursor.execute('LOAD VIDEO "ua_detrac.mp4" INTO VideoForSegmentation')
response = cursor.fetch_all()
response.as_df()

 ChatGPT Tutorial

ChatGPT Tutorial

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Start EVA server

We are reusing the start server notebook for launching the EVA server

!wget -nc "https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/00-start-eva-server.ipynb"
%run 00-start-eva-server.ipynb

cursor = connect_to_server()

File ‘00-start-eva-server.ipynb’ already there; not retrieving.

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

nohup eva_server > eva.log 2>&1 &

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

Download News Video and ChatGPT UDF

Download News Video
!wget -nc "https://www.dropbox.com/s/rfm1kds2mv77pca/russia_ukraine.mp4?dl=0" -O russia_ukraine.mp4

Download ChatGPT UDF if needed
!wget -nc https://raw.githubusercontent.com/georgia-tech-db/eva/master/eva/udfs/chatgpt.py -O chatgpt.py

File ‘russia_ukraine.mp4’ already there; not retrieving.

File ‘chatgpt.py’ already there; not retrieving.

Visualize Video

from IPython.display import Video
Video("russia_ukraine.mp4", height=450, width=800, embed=True)

 Similarity search for motif mining

Similarity search for motif mining

In this tutorial, we demonstrate how to utilize the similarity functionality to discover images with similar motifs from a collection of Reddit images. We employ the classic SIFT feature to identify images with a strikingly similar appearance (image-level pipeline).

Additionally, we extend the pipeline by incorporating an object detection model, YOLO, in combination with the SIFT feature. This enables us to identify objects within the images that exhibit a similar appearance (object-level similarity).

To illustrate the seamless integration of different vector stores, we leverage the power of multiple vector stores, namely FAISS and QDRANT, within evadb. This demonstrates the ease with which you can utilize diverse vector stores to construct indexes, enhancing your similarity search experience.

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Start EVA server

We are reusing the start server notebook for launching the EVA server.

!wget -nc "https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/00-start-eva-server.ipynb"
%run 00-start-eva-server.ipynb
cursor = connect_to_server()

nohup eva_server > eva.log 2>&1 &

Download reddit dataset

!wget -nc https://www.dropbox.com/scl/fo/fcj6ojmii0gw92zg3jb2s/h\?dl\=1\&rlkey\=j3kj1ox4yn5fhonw06v0pn7r9 -O reddit-images.zip
!unzip -o reddit-images.zip -d reddit-images

File 'reddit-images.zip' already there; not retrieving.

Archive: reddit-images.zip
warning: stripped absolute path spec from /
mapname: conversion of failed
 extracting: reddit-images/g348_d7jgzgf.jpg
 extracting: reddit-images/g348_d7jphyc.jpg
 extracting: reddit-images/g348_d7ju7dq.jpg
 extracting: reddit-images/g348_d7jhhs3.jpg
 extracting: reddit-images/g1074_d4n1lmn.jpg
 extracting: reddit-images/g1074_d4mxztt.jpg
 extracting: reddit-images/g1074_d4n60oy.jpg
 extracting: reddit-images/g1074_d4n6fgs.jpg
 extracting: reddit-images/g1190_cln9xzr.jpg
 extracting: reddit-images/g1190_cln97xm.jpg
 extracting: reddit-images/g1190_clna260.jpg
 extracting: reddit-images/g1190_clna2x2.jpg
 extracting: reddit-images/g1190_clna91w.jpg
 extracting: reddit-images/g1190_clnad42.jpg
 extracting: reddit-images/g1190_clnajd7.jpg
 extracting: reddit-images/g1190_clnapoy.jpg
 extracting: reddit-images/g1190_clnarjl.jpg
 extracting: reddit-images/g1190_clnavnu.jpg
 extracting: reddit-images/g1190_clnbalu.jpg
 extracting: reddit-images/g1190_clnbf07.jpg
 extracting: reddit-images/g1190_clnc4uy.jpg
 extracting: reddit-images/g1190_clncot0.jpg
 extracting: reddit-images/g1190_clndsnu.jpg
 extracting: reddit-images/g1190_clnce4b.jpg
 extracting: reddit-images/g1209_ct65pvl.jpg
 extracting: reddit-images/g1209_ct66erw.jpg
 extracting: reddit-images/g1209_ct67oqk.jpg
 extracting: reddit-images/g1209_ct6a0g5.jpg
 extracting: reddit-images/g1209_ct6bf1n.jpg
 extracting: reddit-images/g1418_cj3o1h6.jpg
 extracting: reddit-images/g1418_cj3om3h.jpg
 extracting: reddit-images/g1418_cj3qysz.jpg
 extracting: reddit-images/g1418_cj3r4gw.jpg
 extracting: reddit-images/g1418_cj3z7jw.jpg

Load all images into evadb

cursor.execute("DROP TABLE IF EXISTS reddit_dataset;")
response = cursor.fetch_all()
cursor.execute("LOAD IMAGE 'reddit-images/*.jpg' INTO reddit_dataset;")
response = cursor.fetch_all()
response.as_df()

 EVA Query Language Reference

EVA Query Language Reference

EVA Query Language (EVAQL) is derived from SQL. It is tailored for video analytics. EVAQL allows users to invoke deep learning models in the form
of user-defined functions (UDFs).

Here is an example where we first define a UDF wrapping around the FastRCNN object detection model. We then issue a query with this function to detect objects.

--- Create an user-defined function wrapping around FastRCNN ObjectDetector
CREATE UDF IF NOT EXISTS FastRCNNObjectDetector
INPUT (frame NDARRAY UINT8(3, ANYDIM, ANYDIM))
OUTPUT (labels NDARRAY STR(ANYDIM), bboxes NDARRAY FLOAT32(ANYDIM, 4),
 scores NDARRAY FLOAT32(ANYDIM))
TYPE Classification
IMPL 'eva/udfs/fastrcnn_object_detector.py';

--- Use the function to retrieve frames that contain more than 3 cars
SELECT id FROM MyVideo
WHERE ArrayCount(FastRCNNObjectDetector(data).label, 'car') > 3
ORDER BY id;

This page presents a list of all the EVAQL statements that you can leverage in your Jupyter Notebooks.

	LOAD

	SELECT

	EXPLAIN

	SHOW

	CREATE

	DROP

	INSERT

	DELETE

	RENAME

 LOAD

LOAD

LOAD VIDEO FROM FILESYSTEM

LOAD VIDEO 'test_video.mp4' INTO MyVideo;

	test_video.mp4 is the location of the video file in the filesystem on the client.

	MyVideo is the name of the table in EVA where this video is loaded. Subsequent queries over the video must refer to this table name.

When a video is loaded, there is no need to specify the schema for the video table. EVA automatically generates the following schema with two columns:
id and data, that correspond to the frame id and frame content (in Numpy format).

LOAD VIDEO FROM S3

LOAD VIDEO 's3://bucket/dummy.avi' INTO MyVideo;
LOAD VIDEO 's3://bucket/eva_videos/*.mp4' INTO MyVideos;

The videos are downloaded to a directory that can be configured in the EVA configuration file under storage:s3_download_dir. The default directory is ~/.eva/s3_downloads.

LOAD CSV

To LOAD a CSV file, we need to first specify the table schema.

CREATE TABLE IF NOT EXISTS MyCSV (
 id INTEGER UNIQUE,
 frame_id INTEGER,
 video_id INTEGER,
 dataset_name TEXT(30),
 label TEXT(30),
 bbox NDARRAY FLOAT32(4),
 object_id INTEGER
);

LOAD CSV 'test_metadata.csv' INTO MyCSV;

	test_metadata.csv needs to be loaded onto the server using
LOAD statement.

	The CSV file may contain additional columns. EVA will only load
the columns listed in the defined schema.

 SELECT

SELECT

SELECT FRAMES WITH PREDICATES

Search for frames with a car

SELECT id, frame
FROM MyVideo
WHERE ['car'] <@ FastRCNNObjectDetector(frame).labels
ORDER BY id;

Search frames with a pedestrian and a car

SELECT id, frame
FROM MyVideo
WHERE ['pedestrian', 'car'] <@ FastRCNNObjectDetector(frame).labels;

Search for frames containing greater than 3 cars

SELECT id FROM MyVideo
WHERE ArrayCount(FastRCNNObjectDetector(data).label, 'car') > 3
ORDER BY id;

SELECT WITH MULTIPLE UDFS

Compose multiple user-defined functions in a single query to construct semantically complex queries.

SELECT id, bbox, EmotionDetector(Crop(data, bbox))
FROM HAPPY JOIN LATERAL UNNEST(FaceDetector(data)) AS Face(bbox, conf)
WHERE id < 15;

 EXPLAIN

EXPLAIN

EXPLAIN QUERY

List the query plan associated with a EVAQL query

Append EXPLAIN in front of the query to retrieve the plan.

EXPLAIN SELECT CLASS FROM TAIPAI;

 SHOW

SHOW

SHOW UDFS

List the registered user-defined functions

SHOW UDFS;

 CREATE

CREATE

CREATE TABLE

To create a table, specify the schema of the table.

CREATE TABLE IF NOT EXISTS MyCSV (
 id INTEGER UNIQUE,
 frame_id INTEGER,
 video_id INTEGER,
 dataset_name TEXT(30),
 label TEXT(30),
 bbox NDARRAY FLOAT32(4),
 object_id INTEGER
);

CREATE UDF

To register an user-defined function, specify the implementation details of the UDF.

CREATE UDF IF NOT EXISTS FastRCNNObjectDetector
INPUT (frame NDARRAY UINT8(3, ANYDIM, ANYDIM))
OUTPUT (labels NDARRAY STR(ANYDIM), bboxes NDARRAY FLOAT32(ANYDIM, 4),
 scores NDARRAY FLOAT32(ANYDIM))
TYPE Classification
IMPL 'eva/udfs/fastrcnn_object_detector.py';

CREATE MATERIALIZED VIEW

To create a view with materialized results – like the outputs of deep learning model, use the following template:

CREATE MATERIALIZED VIEW UADETRAC_FastRCNN (id, labels) AS
SELECT id, FastRCNNObjectDetector(frame).labels
FROM UADETRAC
WHERE id<5;

 DROP

DROP

DROP TABLE

DROP TABLE DETRACVideo;

DROP UDF

DROP UDF FastRCNNObjectDetector;

 INSERT

INSERT

TABLE MyVideo

MyVideo Table schema

CREATE TABLE MyVideo
(id INTEGER,
data NDARRAY FLOAT32(ANYDIM));

INSERT INTO TABLE

Insert a tuple into a table.

INSERT INTO MyVideo (id, data) VALUES
 (1,
 [[[40, 40, 40] , [40, 40, 40]],
 [[40, 40, 40] , [40, 40, 40]]]);

 DELETE

DELETE

DELETE INTO TABLE

Delete a tuple from a table based on a predicate.

DELETE FROM MyVideo WHERE id<10;

 RENAME

RENAME

RENAME TABLE

RENAME TABLE MyVideo TO MyVideo1;

 User-Defined Functions

User-Defined Functions

This section provides an overview of how you can create and use a custom user-defined function (UDF) in your queries. For example, you could write an UDF that wraps around your custom PyTorch model.

Part 1: Writing a custom UDF

During each step, use this UDF implementation [https://github.com/georgia-tech-db/eva/blob/master/eva/udfs/yolo_object_detector.py] as a reference.

	Create a new file under udfs/ folder and give it a descriptive name. eg: yolo_object_detection.py.

Note

UDFs packaged along with EVA are located inside the udfs [https://github.com/georgia-tech-db/eva/tree/master/eva/udfs] folder.

	Create a Python class that inherits from PytorchClassifierAbstractUDF.

	The PytorchClassifierAbstractUDF is a parent class that defines and implements standard methods for model inference.

	The functions setup and forward should be implemented in your child class. These functions can be implemented with the help of Decorators.

Setup

An abstract method that must be implemented in your child class. The setup function can be used to initialize the parameters for executing the UDF. The parameters that need to be set are

	cacheable: bool

	True: Cache should be enabled. Cache will be automatically invalidated when the UDF changes.

	False: cache should not be enabled.

	udf_type: str

	object_detection: UDFs for object detection.

	batchable: bool

	True: Batching should be enabled

	False: Batching is disabled.

The custom setup operations for the UDF can be written inside the function in the child class. If there is no need for any custom logic, then you can just simply write “pass” in the function definition.

Example of a Setup function

@setup(cacheable=True, udf_type="object_detection", batchable=True)
def setup(self, threshold=0.85):
 #custom setup function that is specific for the UDF
 self.threshold = threshold
 self.model = torch.hub.load("ultralytics/yolov5", "yolov5s", verbose=False)

Forward

An abstract method that must be implemented in your UDF. The forward function receives the frames and runs the deep learning model on the data. The logic for transforming the frames and running the models must be provided by you.
The arguments that need to be passed are

	input_signatures: List[IOColumnArgument]

Data types of the inputs to the forward function must be specified. If no constraints are given, then no validation is done for the inputs.

	output_signatures: List[IOColumnArgument]

Data types of the outputs to the forward function must be specified. If no constraints are given, then no validation is done for the inputs.

A sample forward function is given below

@forward(
 input_signatures=[
 PyTorchTensor(
 name="input_col",
 is_nullable=False,
 type=NdArrayType.FLOAT32,
 dimensions=(1, 3, 540, 960),
)
],
 output_signatures=[
 PandasDataframe(
 columns=["labels", "bboxes", "scores"],
 column_types=[
 NdArrayType.STR,
 NdArrayType.FLOAT32,
 NdArrayType.FLOAT32,
],
 column_shapes=[(None,), (None,), (None,)],
)
],
)
 def forward(self, frames: Tensor) -> pd.DataFrame:
 #the custom logic for the UDF
 outcome = []

 frames = torch.permute(frames, (0, 2, 3, 1))
 predictions = self.model([its.cpu().detach().numpy() * 255 for its in frames])

 for i in range(frames.shape[0]):
 single_result = predictions.pandas().xyxy[i]
 pred_class = single_result["name"].tolist()
 pred_score = single_result["confidence"].tolist()
 pred_boxes = single_result[["xmin", "ymin", "xmax", "ymax"]].apply(
 lambda x: list(x), axis=1
)

 outcome.append(
 {"labels": pred_class, "bboxes": pred_boxes, "scores": pred_score}
)

 return pd.DataFrame(outcome, columns=["labels", "bboxes", "scores"])

Part 2: Registering and using the UDF in EVA Queries

Now that you have implemented your UDF, we need to register it as a UDF in EVA. You can then use the UDF in any query.

	Register the UDF with a query that follows this template:

CREATE UDF [IF NOT EXISTS] <name>
IMPL <path_to_implementation>;

where,

	<name> - specifies the unique identifier for the UDF.

	<path_to_implementation> - specifies the path to the implementation class for the UDF

Here, is an example query that registers a UDF that wraps around the ‘YoloObjectDetection’ model that performs Object Detection.

CREATE UDF YoloDecorators
IMPL 'eva/udfs/decorators/yolo_object_detection_decorators.py';

A status of 0 in the response denotes the successful registration of this UDF.

	Now you can execute your UDF on any video:

SELECT YoloDecorators(data) FROM MyVideo WHERE id < 5;

	You can drop the UDF when you no longer need it.

DROP UDF IF EXISTS YoloDecorators;

 Ultralytics Models

Ultralytics Models

This section provides an overview of how you can use out-of-the-box Ultralytics models in EVA.

Creating YOLO Model

To create a YOLO UDF in EVA using Ultralytics models, use the following SQL command:

CREATE UDF IF NOT EXISTS Yolo
TYPE ultralytics
'model' 'yolov8m.pt'

You can change the model value to specify any other model supported by Ultralytics.

Supported Models

The following models are currently supported by Ultralytics in EVA:

	yolov8n.pt

	yolov8s.pt

	yolov8m.pt

	yolov8l.pt

	yolov8x.pt

Please refer to the Ultralytics documentation [https://docs.ultralytics.com/tasks/detect/#models] for more information about these models and their capabilities.

Using Ultralytics Models with Other UDFs

This code block demonstrates how the YOLO model can be combined with other models such as Color and DogBreedClassifier to perform more specific and targeted object detection tasks. In this case, the goal is to find images of black-colored Great Danes.

The first query uses YOLO to detect all images of dogs with black color. The UNNEST function is used to split the output of the Yolo UDF into individual rows, one for each object detected in the image. The Color UDF is then applied to the cropped portion of the image to identify the color of each detected dog object. The WHERE clause filters the results to only include objects labeled as “dog” and with a color of “black”.

SELECT id, bbox FROM dogs
JOIN LATERAL UNNEST(Yolo(data)) AS Obj(label, bbox, score)
WHERE Obj.label = 'dog'
AND Color(Crop(data, bbox)) = 'black';

The second query builds upon the first by further filtering the results to only include images of Great Danes. The DogBreedClassifier UDF is used to classify the cropped portion of the image as a Great Dane. The WHERE clause adds an additional condition to filter the results to only include objects labeled as “dog”, with a color of “black”, and classified as a “great dane”.

SELECT id, bbox FROM dogs
JOIN LATERAL UNNEST(Yolo(data)) AS Obj(label, bbox, score)
WHERE Obj.label = 'dog'
AND DogBreedClassifier(Crop(data, bbox)) = 'great dane'
AND Color(Crop(data, bbox)) = 'black';

 HuggingFace Models

HuggingFace Models

This section provides an overview of how you can use out-of-the-box HuggingFace models in EVA.

Creating UDF from HuggingFace

EVA supports UDFS similar to Pipelines [https://huggingface.co/docs/transformers/main_classes/pipelines] in HuggingFace.

CREATE UDF IF NOT EXISTS HFObjectDetector
TYPE HuggingFace
'task' 'object-detection'
'model' 'facebook / detr-resnet-50'

EVA supports all arguments supported by HF pipelines. You can pass those using a key value format similar to task and model above.

Supported Tasks

EVA supports the following tasks from huggingface:

	Audio Classification

	Automatic Speech Recognition

	Text Classification

	Summarization

	Text2Text Generation

	Text Generation

	Image Classification

	Image Segmentation

	Image-to-Text

	Object Detection

	Depth Estimation

 OpenAI Models

OpenAI Models

This section provides an overview of how you can use OpenAI models in EVA.

Chat Completion UDFs

To create a chat completion UDF in EVA, use the following SQL command:

CREATE UDF IF NOT EXISTS OpenAIChatCompletion
IMPL 'eva/udfs/openai_chat_completion_udf.py'
'model' 'gpt-3.5-turbo'

EVA supports the following models for chat completion task:

	“gpt-4”

	“gpt-4-0314”

	“gpt-4-32k”

	“gpt-4-32k-0314”

	“gpt-3.5-turbo”

	“gpt-3.5-turbo-0301”

The chat completion UDF can be composed in interesting ways with other UDFs. Please refer to the ChatGPT notebook [https://github.com/georgia-tech-db/eva/blob/master/tutorials/08-chatgpt.ipynb] for an example of combining chat completion task with caption extraction and video summarization models from Hugging Face and feeding it to chat completion to ask questions about the results.

 User-Defined Functions

User-Defined Functions

This section provides an overview of how you can create and use a custom user-defined function (UDF) in your queries. For example, you could write a UDF that wraps around a PyTorch model.

Part 1: Writing a Custom UDF

During each step, use the UDF implementation [https://github.com/georgia-tech-db/eva/blob/master/eva/udfs/fastrcnn_object_detector.py] as a reference.

	Create a new file under udfs/ folder and give it a descriptive name, e.g., fastrcnn_object_detector.py.

Note

UDFs packaged along with EVA are located inside the udfs [https://github.com/georgia-tech-db/eva/tree/master/eva/udfs] folder.

	Create a Python class that inherits from PytorchClassifierAbstractUDF.

	The PytorchClassifierAbstractUDF is a parent class that defines and implements standard methods for model inference.

	Implement the setup and forward functions in your child class. These functions can be implemented with the help of decorators.

Setup

An abstract method that must be implemented in your child class. The setup function can be used to initialize the parameters for executing the UDF. The following parameters must be set:

	cacheable: bool

	True: Cache should be enabled. The cache will be automatically invalidated when the UDF changes.

	False: Cache should not be enabled.

	udf_type: str

	object_detection: UDFs for object detection.

	batchable: bool

	True: Batching should be enabled.

	False: Batching is disabled.

The custom setup operations for the UDF can be written inside the function in the child class. If no custom logic is required, then you can just write pass in the function definition.

Example of the setup function:

@setup(cacheable=True, udf_type="object_detection", batchable=True)
def setup(self, threshold=0.85):
 self.threshold = threshold
 self.model = torchvision.models.detection.fasterrcnn_resnet50_fpn(
 weights="COCO_V1", progress=False
)
 self.model.eval()

In this instance, we have configured the cacheable and batchable attributes to True. As a result, EVA will cache the UDF outputs and utilize batch processing for increased efficiency.

Forward

An abstract method that must be implemented in your child class. The forward function receives the frames and runs the Deep Learning model on the frames. The logic for transforming the frames and running the models must be provided by you. The arguments that need to be passed are:

	input_signatures: List[IOColumnArgument]

Data types of the inputs to the forward function must be specified. If no constraints are given, no validation is done for the inputs.

	output_signatures: List[IOColumnArgument]

Data types of the outputs from the forward function must be specified. If no constraints are given, no validation is done for the inputs.

A sample forward function is given below:

@forward(
 input_signatures=[
 PyTorchTensor(
 name="input_col",
 is_nullable=False,
 type=NdArrayType.FLOAT32,
 dimensions=(1, 3, 540, 960),
)
],
 output_signatures=[
 PandasDataframe(
 columns=["labels", "bboxes", "scores"],
 column_types=[
 NdArrayType.STR,
 NdArrayType.FLOAT32,
 NdArrayType.FLOAT32,
],
 column_shapes=[(None,), (None,), (None,)],
)
],
)
def forward(self, frames: Tensor) -> pd.DataFrame:
 predictions = self.model(frames)
 outcome = []
 for prediction in predictions:
 pred_class = [
 str(self.labels[i]) for i in list(self.as_numpy(prediction["labels"]))
]
 pred_boxes = [
 [i[0], i[1], i[2], i[3]]
 for i in list(self.as_numpy(prediction["boxes"]))
]

In this instance, the forward function takes a PyTorch tensor of Float32 type with a shape of (1, 3, 540, 960) as input. The resulting output is a pandas dataframe with 3 columns, namely “labels”, “bboxes”, and “scores”, and of string, float32, and float32 types respectively.

Part 2: Registering and using the UDF in queries

Now that you have implemented your UDF we need to register it in EVA. You can then use the function in any query.

Register the UDF in EVA

CREATE UDF [IF NOT EXISTS] <name>
IMPL <implementation_path>;

name - specifies the unique identifier for the UDF.

implementation_path - specifies the path to the implementation class for the UDF

Here, is an example query that registers a UDF that wraps around the fasterrcnn_resnet50_fpn model that performs Object Detection.

CREATE UDF FastRCNNObjectDetector
IMPL 'eva/udfs/fastrcnn_object_detector.py';

Call registered UDF in a query

SELECT FastRCNNObjectDetector(data) FROM MyVideo WHERE id < 5;

Drop the UDF

DROP UDF IF EXISTS FastRCNNObjectDetector;

 IO Descriptors

IO Descriptors

EVA supports three key data types. The inputs and outputs of the user-defined functions (UDFs) must be of one of these types.

NumpyArray

Used when the inputs or outputs of the UDF is of type Numpy Array.

Parameters

name (str): name of the numpy array.

is_nullable (bool): boolean value indicating if the numpy array can be NULL.

type (NdArrayType): data type of all the elements in the numpy array. The available types can be found in eva/catalog/catalog_type.py in the class NdArrayType

dimensions(Tuple(int)): shape of the numpy array

from eva.catalog.catalog_type import NdArrayType
NumpyArray(
 name="input_arr",
 is_nullable=False,
 type=NdArrayType.INT32,
 dimensions=(2, 2),
)

PyTorchTensor

name (str): name of the pytorch tensor.

is_nullable (bool): boolean value indicating if the pytorch tensor can be NULL.

type (NdArrayType): data type of elements in the pytorch tensor. The available types can be found in eva/catalog/catalog_type.py in class NdArrayType

dimensions(Tuple(int)): shape of the numpy array

from eva.catalog.catalog_type import NdArrayType
PyTorchTensor(
 name="input_arr",
 is_nullable=False,
 type=NdArrayType.INT32,
 dimensions=(2, 2),
)

PandasDataframe

columns (List[str]): list of strings that represent the expected column names in the pandas dataframe that is returned from the UDF.

column_types (NdArrayType): expected datatype of the column in the pandas dataframe returned from the UDF. The NdArrayType class is inherited from eva.catalog.catalog_type.

column_shapes (List[tuples]): list of tuples that represent the expected shapes of columns in the pandas dataframe returned from the UDF.

PandasDataframe(
 columns=["labels", "bboxes", "scores"],
 column_types=[
 NdArrayType.STR,
 NdArrayType.FLOAT32,
 NdArrayType.FLOAT32,
],
 column_shapes=[(None,), (None,), (None,)],
)

 Configure GPU

Configure GPU

	Queries in EVA use deep learning models that run much faster on a GPU as opposed to a CPU. If your workstation has a GPU, you can configure EVA to use the GPU during query execution. Use the following command to check your hardware capabilities:

ubuntu-drivers devices
nvidia-smi

A valid output from the command indicates that your GPU is configured and ready to use. If not, you will need to install the appropriate GPU driver. This page [https://towardsdatascience.com/deep-learning-gpu-installation-on-ubuntu-18-4-9b12230a1d31] provides a step-by-step guide on installing and configuring the GPU driver in the Ubuntu Operating System.

	When installing an NVIDIA driver, ensure that the version of the GPU driver is correct to avoid compatibility issues.

	When installing cuDNN, you will need to create an account and ensure that you get the correct deb files for your operating system and architecture.

	You can run the following code in a Jupyter notebook to verify that your GPU is detected by PyTorch:

import torch
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)

Output of cuda:0 indicates the presence of a GPU. 0 indicates the index of the GPU in system. If you have multiple GPUs on your workstation, the index must be updated accordingly.

	Now configure the executor section in eva.yml as follows:

executor:
 gpus: {'127.0.1.1': [0]}

Here, 127.0.1.1 is the loopback address on which the EVA server is running. 0 refers to the GPU index to be used.

 EVA Internals

EVA Internals

Path of a Query

The following code represents a sequence of operations that can be used to execute a query in a evaql database. found in eva/server/command_handler.py [https://github.com/georgia-tech-db/eva/blob/076704705c35245a6c83a626dba599342c59ff64/eva/server/command_handler.py#L37]

Parse the query using the Parser() function provided by the evaql library. The result of this step will be a parsed representation of the query in the form of an abstract syntax tree (AST).

stmt = Parser().parse(query)[0]

Bind the parsed AST to a statement context using the StatementBinder() function. This step resolves references to schema objects and performs other semantic checks on the query.

StatementBinder(StatementBinderContext()).bind(stmt)

Convert the bound AST to a logical plan using the StatementToPlanConvertor() function. This step generates a logical plan that specifies the sequence of operations needed to execute the query.

l_plan = StatementToPlanConvertor().visit(stmt)

Generate a physical plan from the logical plan using the plan_generator.build() function. This step optimizes the logical plan and generates a physical plan that specifies how the query will be executed.

p_plan = plan_generator.build(l_plan)

Execute the physical plan using the PlanExecutor() function. This step retrieves the data from the database and produces the final output of the query.

output = PlanExecutor(p_plan).execute_plan()

Overall, this sequence of operations represents the path of query execution in a evaql database, from parsing the query to producing the final output.

Topics

	Catalog

 Catalog

Catalog

Catalog Manager

Explanation for developers on how to use the eva catalog_manager [https://github.com/georgia-tech-db/eva/blob/076704705c35245a6c83a626dba599342c59ff64/eva/catalog/catalog_manager.py#L44].

CatalogManager class that provides a set of services to interact with a database that stores metadata about tables, columns, and user-defined functions (UDFs). Information like what is the data type in a certain column in a table, type of a table, its name, etc.. It contains functions to get, insert and delete catalog entries for Tables, UDFs, UDF IOs, Columns and Indexes.

This data is stored in the eva_catalog.db file which can be found in ~/.eva/<version>/ folder.

Catalog manager currently has 5 services in it:

TableCatalogService()
ColumnCatalogService()
UdfCatalogService()
UdfIOCatalogService()
IndexCatalogService()

Catalog Services

This class provides functionality related to a table catalog, including inserting, getting, deleting, and renaming table entries, as well as retrieving all entries. e.g. the TableCatalogService contains code to get, insert and delete a table.

Catalog Models

These contain the data model that is used by the catalog services.
Each model represents a table in the underlying database.

[image: Catalog Diagram]

 Contributing

Contributing

We welcome all kinds of contributions to EVA.

	Code reviews [https://github.com/georgia-tech-db/eva/pulls]

	Improving documentation [https://github.com/georgia-tech-db/eva/tree/master/docs]

	Tutorials and applications [https://github.com/georgia-tech-db/eva/tree/master/tutorials]

	New features

Setting up the Development Environment

First, you will need to checkout the repository from GitHub and build EVA from
the source. Follow the following instructions to build EVA locally. We recommend using a virtual environment and the pip package manager.

git clone https://github.com/georgia-tech-db/eva.git && cd eva
python3 -m venv test_eva_db # create a virtual environment
source test_eva_db/bin/activate # activate the virtual environment
pip install --upgrade pip # upgrade pip
pip install -e ".[dev]" # build and install the EVA package
bash script/test/test.sh # run the eva EVA suite

After installing the package locally, you can make changes and run the test cases to check their impact.

pip install . # reinstall EVA package to include local changes
pkill -9 eva_server # kill running EVA server (if any)
eva_server& # launch EVA server with newly installed package

Testing

Check if your local changes broke any unit or integration tests by running the following script:

bash script/test/test.sh

If you want to run a specific test file, use the following command.

python -m pytest test/integration_tests/test_select_executor.py

Use the following command to run a specific test case within a specific test
file.

python -m pytest test/integration_tests/test_select_executor.py -k 'test_should_load_and_select_in_table'

Submitting a Contribution

Follow the following steps to contribute to EVA:

	Merge the most recent changes from the master branch

git remote add origin git@github.com:georgia-tech-db/eva.git
git pull . origin/master

	Run the test script to ensure that all the test cases pass.

	If you are adding a new EVAQL command, add an illustrative example usage in
the documentation [https://github.com/georgia-tech-db/eva/tree/master/docs].

	Run the following command to ensure that code is properly formatted.

python script/formatting/formatter.py

Code Style

We use the black [https://github.com/psf/black] code style for
formatting the Python code. For docstrings and documentation, we use
Google Pydoc format [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html].

def function_with_types_in_docstring(param1, param2) -> bool:
 """Example function with types documented in the docstring.

 Additional explanatory text can be added in paragraphs.

 Args:
 param1 (int): The first parameter.
 param2 (str): The second parameter.

 Returns:
 bool: The return value. True for success, False otherwise.

Debugging

We recommend using Visual Studio Code with a debugger for developing EVA. Here are the steps for setting up the development environment:

	Install the Python extension [https://marketplace.visualstudio.com/items?itemName=ms-python.python] in Visual Studio Code.

	Install the Python Test Explorer extension [https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.vscode-python-test-adapter].

3. Follow these instructions to run a particular test case from the file:
Getting started [https://github.com/kondratyev-nv/vscode-python-test-adapter#getting-started].

[image: ../../_images/eva-debug-1.jpg]
[image: ../../_images/eva-debug-2.jpg]

Architecture Diagram

[image: ../../_images/eva-arch.png]

Troubleshooting

If the test suite fails with a PermissionDenied exception, update the path_prefix attribute under the storage section in the EVA configuration file (~/.eva/eva.yml) to a directory where you have write privileges.

 Debugging

Debugging

We recommend Visual Studio Code with a debugger for debugging EVA. This tutorial presents a detailed step-by-step process of using the debugger.

Setup debugger

	Install the Python extension [https://marketplace.visualstudio.com/items?itemName=ms-python.python] in Visual Studio Code.

	Install the Python Test Explorer extension [https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.vscode-python-test-adapter].

3. Follow these instructions to run a particular test case from the file:
Getting started [https://github.com/kondratyev-nv/vscode-python-test-adapter].

[image: ../../_images/eva-debug-1.jpg]
[image: ../../_images/eva-debug-2.jpg]

Alternative: Manually Setup Debugger for EVA

When you press the debug icon, you will be given an option to create a launch.json file.

While creating the JSON file, you will be prompted to select the environment to be used. Select the python environment from the command palette at the top. If the Python environment cannot be seen in the drop-down menu, try installing the python extension, and repeat the process.

Once you select the python environment, a launch.json file will be created with the default configurations set to debug a simple .py file.

More configurations can further be added to the file, to modify the environment variables or to debug an entire folder or workspace directory. Use the following configuration in the JSON file:

{

 "version": "0.2.0",
 "configurations": [

 {
 "name": "Python: test_pytorch.py",
 "type": "python",
 "request": "launch",
 "program": "${workspaceFolder}/test/integration_tests/test_pytorch.py",
 "console": "integratedTerminal",
 "cwd": "${workspaceFolder}",
 "env": {"PYTHONPATH": "${workspaceRoot}"}
 }

]
}

You can modify the fields of the above JSON file as follows:

name: It is the reader-friendly name to appear in the Debug launch
configuration dropdown.

type: The type of debugger to use for this launch configuration.

program: The executable or file to run when launching the debugger.
In the above example, test_integration.py will be executed by the
debugger.

env: Here you specify the environment variables. In the above
example, the path for the conda environment for Eva has been specified.

Using these configuration variables, you can run the debugger both locally as
well as on a remote server.

 Extending EVA

Extending EVA

This document details the steps involved in adding support for a new operator (or command) in EVA. We illustrate the process using a DDL command.

Command Handler

An input query string is handled by Parser,
StatementTOPlanConverter, PlanGenerator, and PlanExecutor.
We discuss each part separately.

def execute_query(query) -> Iterator[Batch]:
 """
 Execute the query and return a result generator.
 """
 #1. parser
 stmt = Parser().parse(query)[0]
 #2. statement to logical plan
 l_plan = StatementToPlanConverter().visit(stmt)
 #3. logical to physical plan
 p_plan = PlanGenerator().build(l_plan)
 #4. parser
 return PlanExecutor(p_plan).execute_plan()

1. Parser

The parser firstly generate syntax tree from the input string, and
then transform syntax tree into statement.

The first part of Parser is build from a LARK grammar file.

parser/eva

	eva.lark - add keywords(eg. CREATE, TABLE) under Common
Keywords

	Add new grammar rule (eg. create_table)

	Write a new grammar, for example:

create_table: CREATE TABLE if_not_exists? table_name create_definitions

The second part of parser is implemented as parser visitor.

parser/lark_visitor

	_[cmd]_statement.py - eg. class CreateTable(evaql_parserVisitor)

	Write functions to transform each input data from syntax tree to
desired type. (eg. transform Column information into a list of
ColumnDefinition)

	Write a function to construct [cmd]Statement and return it.

	__init__.py - import _[cmd]_statement.py and add its class to
ParserVisitor’s parent class.

from src.parser.parser_visitor._create_statement import CreateTable
class ParserVisitor(CommonClauses, CreateTable, Expressions,
 Functions, Insert, Select, TableSources,
 Load, Upload):

parser/

	[cmd]_statement.py - class [cmd]Statement. Its constructor is
called in _[cmd]_statement.py

	types.py - register new StatementType

2. Statement To Plan Converter

The part transforms the statement into corresponding logical plan.

Optimizer

	operators.py

	Define class Logical[cmd], which is the logical node for the
specific type of command.

class LogicalCreate(Operator):
 def __init__(self, video: TableRef, column_list: List[DataFrameColumn], if_not_exists: bool = False, children=None):
 super().__init__(OperatorType.LOGICALCREATE, children)
 self._video = video
 self._column_list = column_list
 self._if_not_exists = if_not_exists
 # ...

	Register new operator type to class OperatorType, Notice that
must add it before LOGICALDELIMITER !!!

	statement_to_opr_convertor.py

	import resource

from src.optimizer.operators import LogicalCreate
from src.parser.rename_statement import CreateTableStatement

	implement visit_[cmd]() function, which converts statement to
operator

May need to convert the statement into another data type.
The new data type is usable for executing command.
For example, column_list -> column_metadata_list

def visit_create(self, statement: AbstractStatement):
 video_ref = statement.table_ref
 if video_ref is None:
 LoggingManager().log("Missing Table Name In Create Statement",
 LoggingLevel.ERROR)

 if_not_exists = statement.if_not_exists
 column_metadata_list = create_column_metadata(statement.column_list)

 create_opr = LogicalCreate(
 video_ref, column_metadata_list, if_not_exists)
 self._plan = create_opr

	modify visit function to call the right visit_[cmd] function

def visit(self, statement: AbstractStatement):
 if isinstance(statement, SelectStatement):
 self.visit_select(statement)
 #...
 elif isinstance(statement, CreateTableStatement):
 self.visit_create(statement)
 return self._plan

3. Plan Generator

The part transformed logical plan to physical plan. The modified files
are stored under Optimizer and Planner folders.

plan_nodes/

	[cmd]_plan.py - class [cmd]Plan, which stored information
required for rename table.

class CreatePlan(AbstractPlan):
 def __init__(self, video_ref: TableRef,
 column_list: List[DataFrameColumn],
 if_not_exists: bool = False):
 super().__init__(PlanOprType.CREATE)
 self._video_ref = video_ref
 self._column_list = column_list
 self._if_not_exists = if_not_exists
 #...

	types.py - register new plan operator type to PlanOprType

optimizer/rules

	rules.py-

	Import operators

	Register new ruletype to RuleType and Promise (place it
before IMPLEMENTATION_DELIMITER !!)

	implement class Logical[cmd]ToPhysical, its member function
apply() will construct a corresponding[cmd]Plan object.

class LogicalCreateToPhysical(Rule):
 def __init__(self):
 pattern = Pattern(OperatorType.LOGICALCREATE)
 super().__init__(RuleType.LOGICAL_CREATE_TO_PHYSICAL, pattern)

def promise(self):
 return Promise.LOGICAL_CREATE_TO_PHYSICAL

def check(self, before: Operator, context: OptimizerContext):
 return True

def apply(self, before: LogicalCreate, context: OptimizerContext):
 after = CreatePlan(before.video, before.column_list, before.if_not_exists)
 return after

	rules_base.py-

	Register new ruletype to RuleType and Promise (place it
before IMPLEMENTATION_DELIMITER !!)

	rules_manager.py-

	Import rules created in rules.py

	Add imported logical to physical rules to self._implementation_rules

4. Plan Executor

PlanExecutor uses data stored in physical plan to run the command.

executor/

	[cmd]_executor.py - implement an executor that make changes in
catalog, metadata, or storage engine to run the command.

	May need to create helper function in CatalogManager,
DatasetService, DataFrameMetadata, etc.

class CreateExecutor(AbstractExecutor):
 def exec(self):
 if (self.node.if_not_exists):
 # check catalog if we already have this table
 return

 table_name = self.node.video_ref.table_info.table_name
 file_url = str(generate_file_path(table_name))
 metadata = CatalogManager().create_metadata(table_name, file_url, self.node.column_list)

 StorageEngine.create(table=metadata)

Additional Notes

Key data structures in EVA:

	Catalog: Records DataFrameMetadata for all tables.

	data stored in DataFrameMetadata: name, file_url, identifier_id,
schema

	file_url - used to access the real table in storage engine.

	For the RENAME table command, we use the old_table_name to access the corresponding entry in metadata table, and the modified name of the table.

	Storage Engine:

	API is defined in src/storage, currently only supports
create, read, write.

 EVA Release Guide

EVA Release Guide

Part 1: Before You Start

Make sure you have PyPI [https://pypi.org] account with maintainer access to the EVA project.
Create a .pypirc in your home directory. It should look like this:

[distutils]
index-servers =
pypi
pypitest

[pypi]
username=YOUR_USERNAME
password=YOUR_PASSWORD

Then run chmod 600 ./.pypirc so that only you can read/write the file.

Part 2: Release Steps

	Ensure that you’re in the top-level eva directory.

	Ensure that your branch is in sync with the master branch:

$ git pull origin master

	Add a new entry in the Changelog for the release.

[0.0.6]
[Breaking Changes]
[Added]
[Changed]
[Deprecated]
[Removed]

Make sure CHANGELOG.md is up to date for the release: compare against PRs
merged since the last release.

	Update version to, e.g. 0.0.6 (remove the +dev label) in eva/version.py.

	Commit these changes and create a PR:

git checkout -b release-v0.0.6
git add . -u
git commit -m "[RELEASE]: v0.0.6"
git push --set-upstream origin release-v0.0.6

	Once the PR is approved, merge it and pull master locally.

	Tag the release:

git tag -a v0.0.6 -m "v0.0.6 release"
git push origin v0.0.6

	Build the source and wheel distributions:

rm -rf dist build # clean old builds & distributions
python3 setup.py sdist # create a source distribution
python3 setup.py bdist_wheel # create a universal wheel

	Check that everything looks correct by installing the wheel locally and checking the version:

python3 -m venv test_evadb # create a virtualenv for testing
source test_evadb/bin/activate # activate virtualenv
python3 -m pip install dist/evadb-0.9.1-py3-none-any.whl
python3 -c "import eva; print(eva.__version__)"

	Publish to PyPI

pip install twine # if not installed
twine upload dist/* -r pypi

	A PR is automatically submitted (this will take a few hours) on [conda-forge/eva-feedstock](https://github.com/conda-forge/eva-feedstock) to update the version.
* A maintainer needs to accept and merge those changes.

	Create a new release on Github.
* Input the recently-created Tag Version: v0.0.6
* Copy the release notes in CHANGELOG.md to the GitHub tag.
* Attach the resulting binaries in (dist/evadb-x.x.x.*) to the release.
* Publish the release.

	Update version to, e.g. 0.9.1+dev in eva/version.py.

	Add a new changelog entry for the unreleased version in CHANGELOG.md:

[Unreleased]
[Breaking Changes]
[Added]
[Changed]
[Deprecated]
[Removed]

	Commit these changes and create a PR:

git checkout -b bump-v0.9.1+dev
git add . -u
git commit -m "[BUMP]: v0.9.1+dev"
git push --set-upstream origin bump-v0.9.1+dev

	Add the new tag to the EVA project on ReadTheDocs [https://readthedocs.org/projects/evadb],

	Trigger a build for main to pull new tags.

	Go to the Versions tab, and Activate the new tag.

	Go to Admin/Advanced to set this tag as the new default version.

	
	In Overview, make sure a build is triggered:
	
	For the tag v0.9.1

	For latest

Credits: Snorkel [https://github.com/snorkel-team/snorkel/blob/main/RELEASING.md]

 Packaging

Packaging

This section describes practices to follow when packaging your own models or datasets to be used along with EVA.

Models

Please follow the following steps to package models:

	Create a folder with a descriptive name. This folder name will be used by the UDF that is invoking your model.

	
	Place all files used by the UDF inside this folder. These are typically:
	
	Model weights (The .pt files that contain the actual weights)

	Model architectures (The .pt files that contain model architecture information)

	Label files (Extra files that are used in the process of model inference for outputting labels.)

	Other config files (Any other config files required for model inference)

	Zip this folder.

	Upload the zipped folder to this link [https://drive.google.com/drive/folders/1A7MAr93OS-ACegrPv8wTMWcUrBPazDgK] inside the models folder.

Datasets

Please follow the following steps to package datasets:

	Create a folder for your dataset and give it a descriptive name.

	This dataset folder should contain 2 sub-folders named ‘info’ and ‘videos’. For each video entry in the videos folder, there should be a corresponding CSV file in the info folder with the same name. The structure should look like:

[image: ../../_images/packaging_folderstructure.png]

	The videos folder should contain the raw videos in a standard format like mp4 or mov.

	The info folder should contain the meta information corresponding to each video in CSV format. Each row of this CSV file should correspond to 1 unique object in a given frame. Please make sure the columns in your CSV file exactly match to these names. Here is a snapshot of a sample CSV file:

[image: ../../_images/packaging_metafile.png]

	The columns represent the following:
	
	id - (Integer) Auto incrementing index that is unique across all files (Since the CSV files are written to the same meta table, we want it to be unique across all files)

	frame_id - (Integer) id of the frame this row corresponds to.

	video_id - (Integer) id of the video this file corresponds to.

	dataset_name - (String) Name of the dataset (should match the folder name)

	label - (String) label of the object this row corresponds to.

	bbox - (String) comma separated float values representing x1, y1, x2, y2 (top left and bottom right) coordinates of the bounding box

	object_id - (Integer) unique id for the object corresponding to this row.

	Zip this folder.

	Upload the zipped folder to this link [https://drive.google.com/drive/folders/1A7MAr93OS-ACegrPv8wTMWcUrBPazDgK] inside the datasets folder.

Note: In the future, will provide utility scripts along with EVA to download models and datasets easily and place them in the appropriate locations.

 Index

Index

 EVA Read-the-Docs Documentation

EVA Read-the-Docs Documentation

Run the following commands from this directory to compile the documentation.

cd eva/docs
pip install -r requirements.txt
make html
open _build/html/index.html

To test links:

cd eva/docs
sphinx-build . _build -b linkcheck

 <no title>

 SVGs created using https://bottlecaps.de/rr/ui

Color Settings: #7FB5FF

Grammer: .railroad

 Setup

Setup

Installation of EVA involves setting a virtual environment using miniconda [https://conda.io/projects/conda/en/latest/user-guide/install/index.html] and configuring git hooks.

	Clone the repository:

git clone https://github.com/georgia-tech-db/eva.git

	Install the dependencies:

sh script/install/before_install.sh
export PATH="$HOME/miniconda/bin:$PATH"
sh script/install/install.sh

 Versions

Versions

	stable version [https://evadb.readthedocs.io/]

	v0.2.1 [https://evadb.readthedocs.io/en/v0.2.1]

	v0.2.0 [https://evadb.readthedocs.io/en/v0.2.0]

 UDF

UDF

SHOW UDFS

Here is a list of built-in user-defined functions in EVA.

SHOW UDFS;

id name impl
0 FastRCNNObjectDetector eva/udfs/fastrcnn_object_detector.p
1 MVITActionRecognition eva/udfs/mvit_action_recognition.py
2 ArrayCount eva/udfs/ndarray/array_count.py
3 Crop eva/eva/udfs/ndarray/crop.py

FastRCNNObjectDetector is a model for detecting objects. MVITActionRecognition is a model for recognizing actions.

ArrayCount and Crop are utility functions for counting the number of objects in an array and cropping a bounding box from an image, respectively.

SELECT WITH MULTIPLE UDFS

Here is a query that illustrates how to use multiple UDFs in a single query.

SELECT id, bbox, EmotionDetector(Crop(data, bbox))
FROM HAPPY JOIN LATERAL UNNEST(FaceDetector(data)) AS Face(bbox, conf)
WHERE id < 15;

 ASL Action Recognition

ASL Action Recognition

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Start EVA server

We are reusing the start server notebook for launching the EVA server

!wget -nc "https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/00-start-eva-server.ipynb"
%run 00-start-eva-server.ipynb
cursor = connect_to_server()

File ‘00-start-eva-server.ipynb’ already there; not retrieving.

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

nohup eva_server > eva.log 2>&1 &

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

!wget -nc "https://www.dropbox.com/s/ti7ptv0gftbk5ji/computer_asl.mp4?dl=0" -O computer_asl.mp4

#ASL UDF
!wget -nc https://raw.githubusercontent.com/georgia-tech-db/eva/master/eva/udfs/asl_action_recognition.py -O asl_action_recognition.py

#Pickle file containing the mapping of the ASL action to index
!wget -nc https://raw.githubusercontent.com/georgia-tech-db/eva/master/eva/udfs/asl_20_actions_map.pkl -O asl_20_actions_map.pkl

File ‘computer_asl.mp4’ already there; not retrieving.

File ‘asl_action_recognition.py’ already there; not retrieving.

File ‘asl_20_actions_map.pkl’ already there; not retrieving.

Adding the video file to EVADB for analysis

cursor.execute('DROP TABLE IF EXISTS ASL_ACTIONS')
response = cursor.fetch_all()
response.as_df()
cursor.execute('LOAD VIDEO "computer_asl.mp4" INTO ASL_ACTIONS;')
response = cursor.fetch_all()
response.as_df()

 LOADING META-DATA IN CSV FILE

LOADING META-DATA IN CSV FILE

 	
 Run on Google Colab

 	
 View source on GitHub

 	
 Download notebook

Start EVA Server

We are reusing the start server notebook for launching the EVA server

!wget -nc "https://raw.githubusercontent.com/georgia-tech-db/eva/master/tutorials/00-start-eva-server.ipynb"
%run 00-start-eva-server.ipynb
cursor = connect_to_server()

File ‘00-start-eva-server.ipynb’ already there; not retrieving.

[notice] A new release of pip is available: 23.0.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip

Note: you may need to restart the kernel to use updated packages.

nohup eva_server > eva.log 2>&1 &

[notice] A new release of pip is a